FUNDAMENTAL CONCEPTS

Introduction Problem Introduction Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

HOLE HEALING IN MOBILE SENSOR NETWORK

This is a joint work by: **Pritam Goswami, Sangita Patra, Buddhadeb Sau** Department of Mathematics Jadavpur University, Kolkata, India

Outline

FUNDAMENTAL CONCEPTS

Introduction Problem Introduction Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

Introduction

- Problem Introduction
- Model

2 Hole Healing Method

Performance AnalysisCorrectness and Time Complexity

4 References

FUNDAMENTAL CONCEPTS

Introduction

Problem Introduction Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

Introduction

< ロ ト < 団 ト < 三 ト < 三 ト の < で</p>

FUNDAMENTAL CONCEPTS

Introduction

Problem Introduction

Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

Coverage Hole: Definition

An area or a point inside a sensing network which is failed to be sensed by all the sensors in the network is called a coverage hole.

FUNDAMENTAL CONCEPTS

Introduction

Problem Introduction

Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

Coverage Hole: Definition

An area or a point inside a sensing network which is failed to be sensed by all the sensors in the network is called a coverage hole.

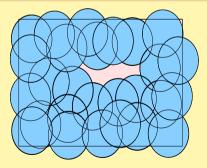


Figure: Hole

FUNDAMENTAL CONCEPTS

Introduction

Problem Introduction Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

Why healing of hole is necessary

A hole in the sensing network means,

- Lack of monitoring.
- Disrupted functionality of the network.

FUNDAMENTAL CONCEPTS

Introduction

Problem Introduction

Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

Problem Definition

- \mathcal{F} be a field.
- # active mobile sensor nodes = k.
- coverage hole exists.
- k nodes are sufficient to cover \mathcal{F} .

The problem is to design an algorithm such that the hole is covered by rearranging the nodes.

Earlier Works

FUNDAMENTAL CONCEPTS

Introduction

Problem Introduction Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

- In [Mahboubi and Aghdam, 2017] an voronoi diagram and virtual force based algorithm for maximum coverage.
- in [Li and Hunter, 2008] an covering algorithm has been proposed but it fails for trivial holes.

Novelty

Introduction

Problem Introduction Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

Our algorithm is:

- effective with minimum number of active nodes to cover holes.
- Robust against multiple coverage hole.
- (a) in best case heals hole within O(n) time and minimal movements.

Model

FUNDAMENTAL CONCEPTS

Introduction

Problem Introduction

Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

Sensor nodes :

- connectivity radius *r*.
- Sensing radius s.
- are homogeneous.
- has limited memory.
- has agreement on global co ordinate system.
- can exchange information with other nodes within $r(\leq 2s)$ distance.

◆□ → ◆□ → ◆ 三 → ◆ 三 → つへぐ

Preliminaries

FUNDAMENTAL CONCEPTS

Introduction

Problem Introduction

Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

Result 1: ([Sau and Mukhopadhyaya, 2013])

- \mathcal{N} : network deployed on a field of interest \mathcal{F} .
- $\phi(v)$: co ordinate of node *v* on \mathcal{F} .
- $\overline{sz}(\phi(v))$: Perimeter of the circle with center at $\phi(v)$ and radius *s*.
- \mathcal{F} is sensing covered if and only if:
 - ∀ v, each point on sz(φ(v)) is within the sensing zone of at least one other node.

Preliminaries

Model

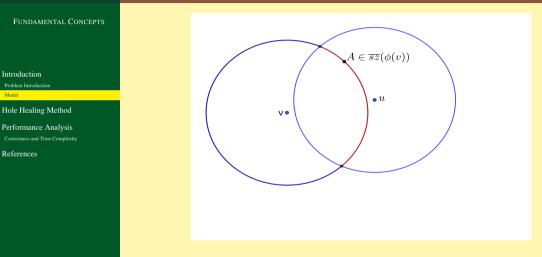


Figure: Coverage of boundary point

Motivation

FUNDAMENTAL CONCEPTS

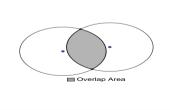
Introduction

Problem Introduction

Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity


References

Result 2: ([Zhang and Hou, 2005])

All sensor nodes:

- completely cover a region \mathcal{F} .
- 2 homogeneous

Then, minimizing # working nodes \equiv minimizing overlap.

Figure: overlap

(ロ)

Motivation

FUNDAMENTAL CONCEPTS

Introduction

Problem Introduction

Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

Result 3: ([Zhang and Hou, 2005])

To cover one crossing point of two disks with minimum overlap:

- only one disk used.
- centers of the three disk should form a equilateral triangle.
- side length $\sqrt{3}s$. (radius of the disks : *s*)

(ロ)

Motivation FUNDAMENTAL CONCEPTS Introduction Problem Introduction A' Model Hole Healing Method Performance Analysis C' $\sqrt{3s}$ References *s_--* B'

Figure: minimum overlap

Motivation

FUNDAMENTAL CONCEPTS

Introduction

Problem Introduction

Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

Intuition for the coverage

To minimize the number of nodes to heal the coverage we have rearranged the nodes such that they form a **hexagonal grid configuration** where each grid unit is $\sqrt{3}s$ (*s* is the sensing range of the nodes).

Motivation

FUNDAMENTAL CONCEPTS

Introduction

Problem Introduction

Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

Hexagonal Grid Configuration: Definition

Each node has exactly six neighbors on a regular hexagon with fixed length sides.

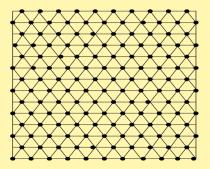


Figure: Hexagonal Configuration

FUNDAMENTAL CONCEPTS

Introduction Problem Introduction Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

Hole Healing Method

< □ > < @ > < E > < E > E のQ @

Data Structure FUNDAMENTAL CONCEPTS GridEntry Introduction Problem Introduction Model *GridEntry* {/*Data type to store the information Hole Healing Method of a grid point*/ Performance Analysis represents the position pos: Correctness and Time Complexity of the grid point. References assignedNode: id of the node assigned; initially 0.

Data Structure

FUNDAMENTAL CONCEPTS

Introduction

Problem Introduction Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

NodeInfo

NodeInfo

{/*Data type for holding the information

a node*/ *id*: *initLoc*:

loc:

the unique identity of a node location of the node as per deployment. reconfigured location; initially 0 which is not a valid position of a node

(ロ)

FUNDAMENTAL CONCEPTS

Introduction

Problem Introduction Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

Algorithm 1: assignNodesToGrid ($\mathcal{G}(\mathcal{F}), GF$)

input: $\mathcal{G}(\mathcal{F})$, a 6-neighbor grid with grid unit $l = \sqrt{3s}$ of the monitoring region \mathcal{F} and an array GF contains relevant information of the grid.

output: hexagonal configuration of the network nodes.

Global variables: array *GF*[*N*] of type *GridEntry*, *N* = number of grid points, array *nodes*[*n*] of type *NodeInf o*, *n* = number of deployed nodes.;

```
for i \leftarrow 0 to n do
```

Call assignNode(id); // id assigned to the exact grid location

FUNDAMENTAL CONCEPTS

Introduction

Problem Introduction Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

Algorithm 2: assignNode(id)

output: assigns the node *nodes*[*id*] to a grid point;

while (there is any unvisited grid point within distance 2s from nodes[id].initLoc) do

Let, x be a closest unvisited grid point within distance 2s from nodes[id].initLoc;

```
if GF[x].assignedNode = 0 then
```

```
Set nodes[id].loc \leftarrow x and GF[x].assignedNode \leftarrow id;
```

Return successful node assignment;

if x is closer to nodes[id].initLoc than nodes[GF[x].assignedNode].initLoc **then**

```
Set nodes[id].loc \leftarrow x;
```

Call assignNode(GF[x].assignedNode);

Return successful node assignment;

Return unsuccessful assignment of node; // id is a free node

FUNDAMENTAL CONCEPTS

Introduction

Problem Introduction Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

Algorithm 3: releaseNode()

Input: *unassignedGridPoints* containing unassigned grid positions of *GF* and *freeNodeList* containing unassigned nodes.

Output: Assigned *free* node at the proper empty grid points. while *unassignedGridPoints* $\neq \phi$ and *freeNodeList* $\neq \phi$ **do**

Remove a grid point from *unassignedGridPoints* say *x*;

Remove a node, say *id*, from *freeNodeList* closest to *x*;

Set nodes[id].loc \leftarrow x and GF[x].assignedNode \leftarrow id;

if unassignedGridPoints = ϕ **then**

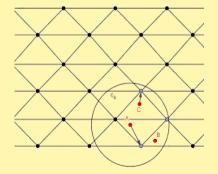
Report all the nodes are in hexagonal configuration;

else

Report Healing of entire hole is not possible;

FUNDAMENTAL CONCEPTS

Introduction Problem Introduction


Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

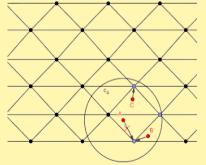
References

• The nodes A and C assign themselves to their nearest vacant grid point.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めへぐ

FUNDAMENTAL CONCEPTS

Introduction


Model

Hole Healing Method

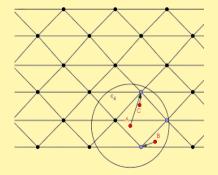
Performance Analysis Correctness and Time Complexity

References

- *B* wants to assign itself to the grid *A* is already assigned.
- distance of *A* is greater than distance of *B* from the grid.
- *B* assigns itself there and *A* de assign itself

FUNDAMENTAL CONCEPTS

Introduction


Problem Introduction Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

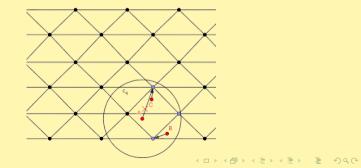
• A tries to assign itself to the next nearest grid point.

< □ > < @ > < E > < E > E のQ()

FUNDAMENTAL CONCEPTS

Introduction

Problem Introduction Model


Hole Healing Method

Performance Analysis Correctness and Time Complexity

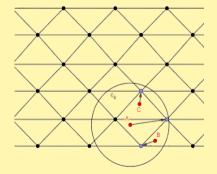
References

• *C* is already assigned there.

- distance of *C* from the grid point is lesser than distance of *A* from the grid point.
- A does not assign itself there.

FUNDAMENTAL CONCEPTS

Introduction


Problem Introduction Model

Hole Healing Method

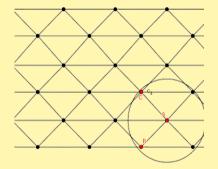
Performance Analysis Correctness and Time Complexity

References

• A now assign itself to the next nearest and vacant grid point.

FUNDAMENTAL CONCEPTS

Introduction Problem Introduction


Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

• *A*, *B*, *C* moves to their corresponding assigned grid points.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めへぐ

FUNDAMENTAL CONCEPTS

Introduction

Problem Introduction Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

Performance Analysis

Results

FUNDAMENTAL CONCEPTS

Introduction

Problem Introduction Model

Hole Healing Method

Performance Analysis

Correctness and Time Complexity

References

from lemma 1 and lemma 2 the theorem follows:

Theorem 1

In a 6-neighbor grid with grid unit $l = \sqrt{3s}$, a 2*s*-disk contains at least four grid points and at most seven grid points.

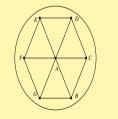


Figure: 7 grid points

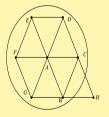


Figure: impossibility of grid points more than 7

Results

FUNDAMENTAL CONCEPTS

Problem Introduction Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

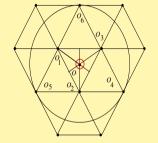


Figure: 6 grid points

Figure: 4 grid points

0

05

06

Figure: 5 grid points

<ロト < 個 ト < 臣 ト < 臣 ト 三 の < で</p>

Correctness and Complexity

FUNDAMENTAL CONCEPTS

Introduction

Problem Introduction Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

• In Algorithm 2 the recursive call of the function *assignNode(id)* can be called at most 7 times for each node. So it terminates within *O*(*n*) times.

• the movement is minimal.

References

FUNDAMENTAL CONCEPTS

- Introduction Problem Introduction
- Model
- Hole Healing Method
- Performance Analysis Correctness and Time Complexity

References

Li, X. and Hunter, D. (2008). Distributed coordinate-free hole recovery. pages 189 – 194.

Mahboubi, H. and Aghdam, A. G. (2017).
 Distributed deployment algorithms for coverage improvement in a network of wireless mobile sensors: Relocation by virtual force.
 IEEE Transactions on Control of Network Systems, 4(4):736–748.

- Sau, B. and Mukhopadhyaya, K. (2013).
 Localizability of wireless sensor networks: Beyond wheel extension.
 In Symposium on Self-Stabilizing Systems, pages 326–340. Springer.
- Zhang, H. and Hou, J. C. (2005).
 Maintaining sensing coverage and connectivity in large sensor networks.

FUNDAMENTAL CONCEPTS

Introduction Problem Introduction Model

Hole Healing Method

Performance Analysis Correctness and Time Complexity

References

Thank You!